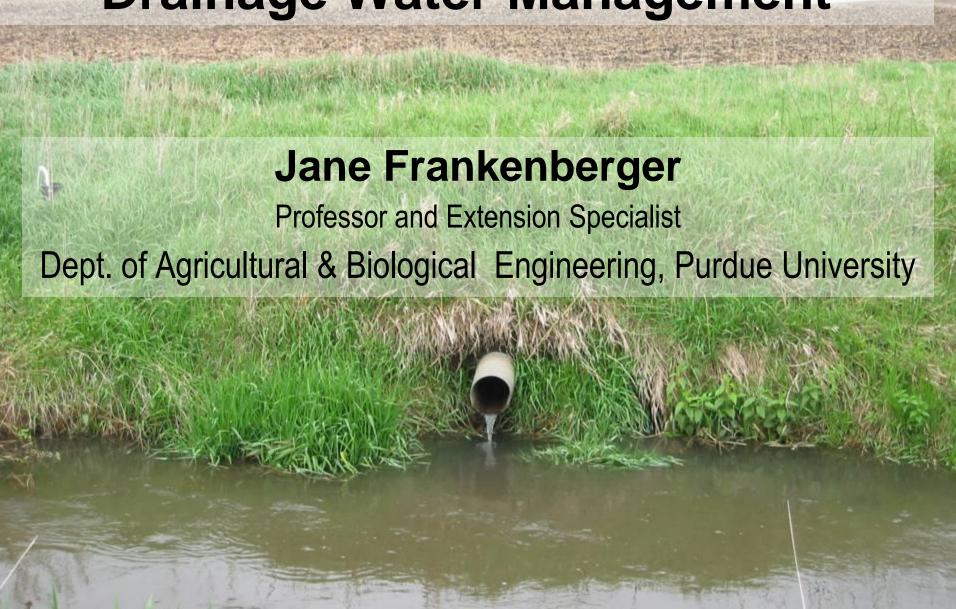
# Agricultural Drainage Management Strategies to Improve Water Quality

Webinar presented jointly by the Indiana Watershed Leadership Academy
Ohio Watershed Academy
April 21, 2010-- noon


### Agenda

| Noon  | Introduction and Getting to Know the Software                                                      | Jane Frankenberger, Purdue<br>Joe Bonnell, Ohio State |
|-------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 12:05 | Drainage Water Management to Reduce Nitrate Losses • Questions and Answers                         | Jane Frankenberger, Purdue University                 |
| 12:20 | How agricultural drainage systems can be enhanced for ecological functions  –Questions and Answers | Jon Ritter, Ohio State<br>University                  |
| 12:40 | Two-Stage Ditch Implementation and Evaluation • Questions and Answers                              | Kent Wamsley, The Nature<br>Conservancy, Indiana      |

## You can ask questions at any time by typing in the wide box below.

Then click "Enter", or the small arrow to right of the box.

### Reducing Nitrate Losses: Drainage Water Management





## Water quality impacts of subsurface drainage

- Positive: Decreased runoff, soil erosion, and phosphorus transport to streams
- Negative: Increased transport of nitrate to streams

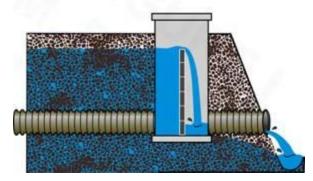


## Can changes be made to clean up drainage water?



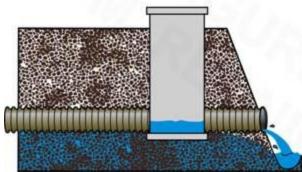
## A new concept is catching on: Drainage Water Management

- You manage drainage by draining only what is needed for crop production
- Holding some water back can improve water quality and may improve yields
- Managing drainage means more decisions for the producer; but also more potential for yield & water quality benefits

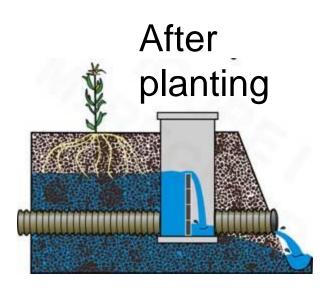

Drainage water management

- Control structures placed in main drain lines
- Gives the potential to control the height of the drain outlet.




### Drainage water management

#### After harvest




The outlet is raised after harvest to reduce nitrate delivery.

### Before planting or harvest



The outlet is lowered a few weeks before planting and harvest to allow the field to drain more fully.



The outlet is raised after planting to potentially store water for crops.

# Multistate Project (Indiana, Ohio, others): On-farm drainage water management demonstration

#### Goals:

- Quantify nitrate load reductions
- Learn about yield increases (or reductions) and costs to farmers
- Serve as demonstration sites for other farmers to visit

## Results: Drainage water management reduced drain flow

- Drain flow reduced by 10 to 50%
- Nitrate concentration is very similar between fields, so this means reduced nitrate loss



## Nitrate concentrations were similar between drainage treatments

- Consistent with other Drainage
   Water Management studies
- As expected, reduction in nitrate load will result from flow reduction, not concentration change



# Effects of drainage water management on other aspects of agricultural sustainability

- ■Soil quality
- Crop N use
  - Crop yield

### Soil quality

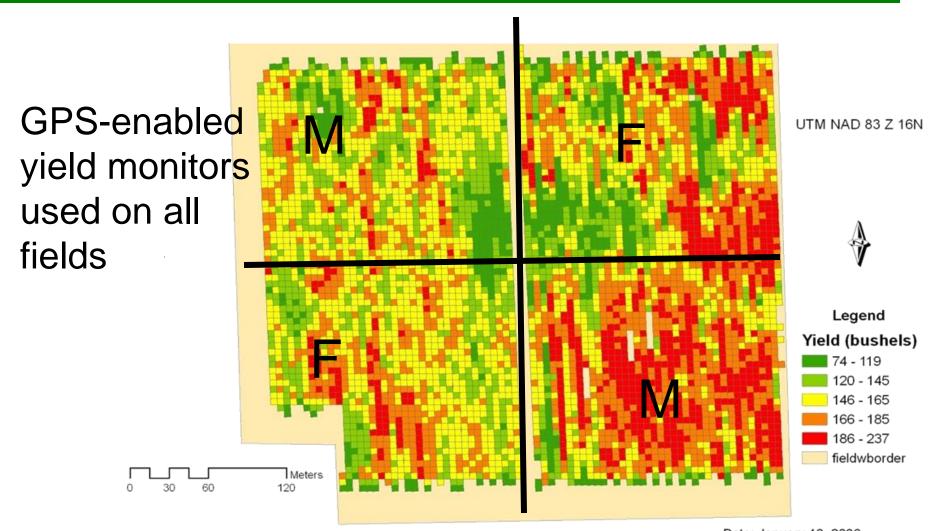
Leader: Dr. Eileen Kladivko

- Soil physical properties and earthworm populations assessed in 2005 and 2008
- Results: No significant differences observed between free drainage and managed drainage



Photo: NRCS

### Crop growth and N use


Leader: Dr. Sylvie Brouder, Agronomist

- End-of-season stalk nitrate test used to indicate whether soil N supply to a corn crop limited yield
- Basal stalk segments analyzed for NH4-N, NO3-N and total N
- SPAD meter readings
- No significant differences found



### **Crop yield**

Leader: Dr. James Lowenberg-Deboer, AgEconomist



Date: January 13, 2006 Prepared by: Jason P. Brown

### 1<sup>st</sup> year Yield Comparison

| Location | Conventional Drainage Average yield (bu/ac) | Drainage Water Management Average yield (bu/ac) | % Yield Difference |
|----------|---------------------------------------------|-------------------------------------------------|--------------------|
| Davis    | 155                                         | 161                                             | 3.8%               |
| Site 1*  | 160                                         | 180                                             | 12.5%              |
| Site 2** | 41                                          | 43                                              | 4.9%               |
| Site 3   | 173                                         | 175                                             | 1.2%               |

<sup>\*</sup> Site 1 had two severe drought places in conventional drainage field which did not occur on controlled drainage field.

Source: Purdue University, M.S. Thesis – Jason P. Brown

<sup>\*\*</sup> Site 2 was planted in soybeans.

### 2<sup>nd</sup> year Yield Comparison

| Location | Conventional (Free)   | Drainage<br>Water        | % Yield<br>Difference |
|----------|-----------------------|--------------------------|-----------------------|
|          | Drainage              | Management               |                       |
|          | Average yield (bu/ac) | Average yield<br>(bu/ac) |                       |
| Davis    | 164                   | 169                      | 3.0%                  |
| Site 1   | 207                   | 189                      | -8.7%                 |
| Site 2   | 187                   | 192                      | 2.7%                  |
| Site 3   | 180                   | 183                      | 1.7%                  |

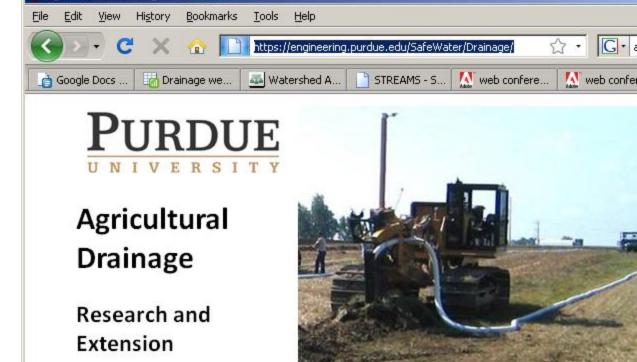
Results are still considered preliminary

Standard deviation decreased with DWM at all sites

## Yield impacts can be positive but sometimes negative

Results show a generally positive effect of drainage water management, although the magnitude varies temporally among years and spatially depending on field topography




### **EQIP** payments available from NRCS

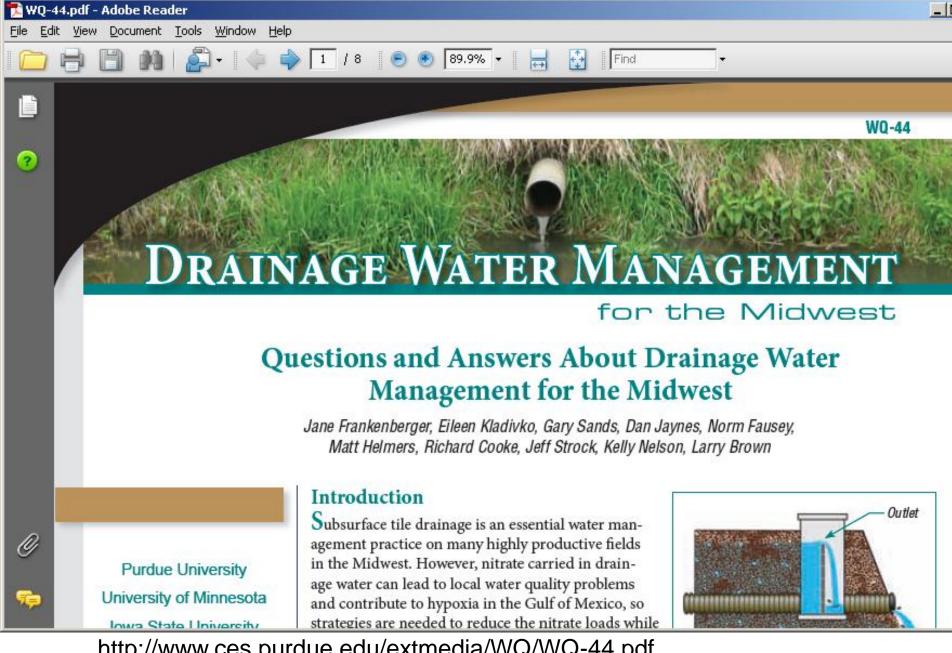
- Conservation Practice 554, Drainage Water Management
- In Indiana: \$750 for installation (practice 587,Structure for Water Control) + \$40/acre for management
- In Ohio: Support for practice but we do not have details

## For more information

https://engineering. purdue.edu/SafeWater/ Drainage/

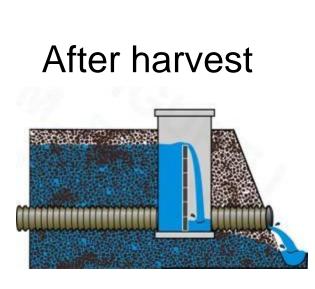
(this is case sensitive)



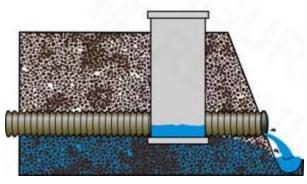

At least 50% of Indiana's cropland has drainage improvements, enhancing crop product than 8 million acres. While enabling Indiana farmers to produce outstanding yields, drainatenvironmental costs. Subsurface tile drains provide a direct flowpath for nitrate loading to rivers. Nutrient enrichment is a growing water quality concern.

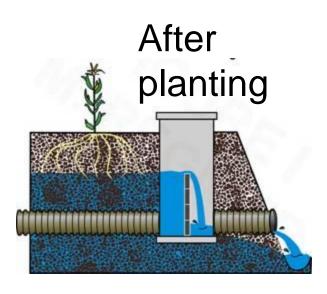
**Purdue researchers** are working to better understand and predict the links between drainage and the environment. **Purdue Extension** brings research-based information to people through Indiana. This site provides links to research and extension at Purdue University.

#### Drainage and Water Quality


🔁 Agricultural Drainage - Mozilla Firefox

Flow and nitrate leaching into tile drains have been monitored for 15 years at the <u>South Agricultural Center (SEPAC) experimental drainage plots</u>. That web site provides inform level of nitrate carried by tile drains and reductions that can be achieved when crop mapractices are changed.





http://www.ces.purdue.edu/extmedia/WQ/WQ-44.pdf

### Conclusion



Before planting or harvest





- Managing drainage after harvest improves downstream water quality
- Managing drainage during the growing season may improve crop yields.

## Drainage water management is one of many practices to consider

- Drainage water management
- Cover crops
- Changes in cropping systems
- Changes in fertilizer application
- Bioreactors
- Wetlands
- Improved drainage ditches